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SUMMARY

When an enoylreductase enzyme of a modular poly-
ketide synthase reduces a propionate extender unit
that has been newly added to the growing polyketide
chain, the resulting methyl branch may have either S
or R configuration. We have uncovered a correlation
between the presence or absence of a unique tyro-
sine residue in the ER active site and the chirality of
the methyl branch that is introduced. When this
position in the active site is occupied by a tyrosine
residue, the methyl branch has S configuration,
otherwise it has R configuration. In a model PKS
in vivo, a mutation (Tyr to Val) in an erythromycin
PKS-derived ER caused a switch in the methyl
branch configuration in the product from S to R. In
contrast, alteration (Val to Tyr) at this position in a ra-
pamycin-derived PKS ER was insufficient to achieve
a switch from R to S, showing that additional residues
also participate in stereocontrol of enoylreduction.

INTRODUCTION

Complex or reduced polyketides constitute one of the largest and

most structurally diverse classes of natural product, including

numerous clinically valuable antibacterial, antifungal, antitumor,

and immunosuppressant compounds. They are produced,

most prolifically by Streptomyces and allied filamentous bacteria,

by stepwise construction of the polyketide chain on modular

polyketide synthases (PKSs), giant assembly line multienzymes

in which each successive set (or module) of fatty acid synthase-

related enzymes normally catalyzes the extension of the polyke-

tide chain by one unit, the intermediates remaining tethered to the

multienzyme during assembly (Staunton and Weissman, 2001).

Many striking mechanistic and structural similarities have been

observed between bacterial modular PKSs and mammalian fatty

acid synthases, but PKSs generate much greater structural diver-

sity in their products (Smith and Tsai, 2007). A given PKS may re-

cruit one of a variety of starter units, activated as their CoA esters;

in addition, different extender units may be used in each module

(usually either acetate units from malonyl-CoA or propionate units

from (2S)-methylmalonyl-CoA). Furthermore, the normal reduc-

tive activities of a fatty acid synthase (ketoreductase [KR], dehy-

dratase [DH], and enoylreductase [ER] activities), which normally
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accomplish together the full reduction of the initially formed b-

ketoacyl group on the nascent chain, may or may not be present

in each PKS module, leading to different oxidation states and

a large number of alternative chemical structures (Staunton and

Weissman, 2001; Smith and Tsai, 2007).

The PKS-catalyzed assembly process also generates stereo-

chemical diversity, because carbon-carbon double bonds may

have either cis or trans geometry, and because of the chirality

of centers bearing hydroxyl groups (where they are retained)

and branching methyl groups (the latter arising from use of pro-

pionate extender units). Understanding how PKSs exert control

over the configuration of these stereocenters is crucial in ratio-

nalizing longstanding observations, codified as Celmer’s rules

(Celmer, 1965), of position-specific homology between natural

macrocyclic polyketides, as well as for current attempts to

create novel polyketide products by manipulating PKS genes.

Key elements of the molecular basis of this stereocontrol have

already been established. For example, if methyl-bearing cen-

ters in the polyketide chain are found to have opposite configu-

rations, even though only the (2S)-isomer of methylmalonyl-CoA

is used as a substrate (Marsden et al., 1994; Wiesmann et al.,

1995), it is in some cases because, in certain modules, after

condensation catalyzed by the KS domain, epimerization of

the initially formed (2R)-methyl-3-ketoacyl thioester allows

access to the opposite configuration at the C-2 methyl branch

(Weissman et al., 1997).

The chirality of C-3 hydroxyl groups is dictated by the KR do-

main, and comparison of amino acid sequences of KR domains

where the stereochemical outcome is known, together with

homology modeling, has allowed the identification of specific

amino acid residues at the KR active site in modular PKSs that

appear to correlate with the stereochemical outcome (Caffrey,

2003; Reid et al., 2003; Baerga-Ortiz et al., 2006; O’Hare et al.,

2006). From these experiments, it is clear that small energetic

differences arising from precisely placed ‘‘gatekeeper’’ residues

at the KR active site lead to the presentation of a different face of

the polyketide substrate to an otherwise essentially identical

catalytic site. The presence of these sequence motifs allows

confident prediction of the configuration of the polyketide prod-

uct, a potentially valuable tool for synthetic chemists wishing to

confirm the configuration of a target natural product for which

the biosynthetic genes are known (Janssen et al., 2007; Udwary

et al., 2007; Bock et al., 2008). A more elaborate extension of

these rules for ketoreduction has recently been proposed

(Keatinge-Clay, 2007) based on X-ray crystal structures of two

PKS KR domains.
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In contrast, it has previously been impossible to predict the

stereochemical outcome of enoylreduction by the ER domain,

or to account for it by features of the active site. We now report

an unexpectedly precise correlation between a unique amino

acid residue in an ER domain and the chirality of the methyl

branch produced when a propionate extender unit is fully re-

duced in a PKS module by the action of that ER. Furthermore,

homology modeling has revealed that the diagnostic residue is

in the active site, and specific mutagenesis has confirmed its im-

portance for stereocontrol. The correlation holds true not only

for antibiotic-producing PKS multienzymes, but also for similar

PKSs that control the production of long-chain methyl-branched

fatty acids forming the highly complex cell walls of Mycobacte-

rium tuberculosis and other disease-causing mycobacteria

(Gokhale et al., 2007).

RESULTS

As shown in Figure 1, the accepted mechanism of ER-catalyzed

reduction, deduced from studies on fatty acid synthases (Smith

and Tsai, 2007), involves 1,4-nucleophilic addition of a hydride

ion from the coenzyme NADPH to the unsaturated thioester

intermediate, followed by stereospecific protonation at the

a-carbon, which establishes the configuration of the methyl

branch. Our initial hypothesis was that all PKS ER domains

have essentially the same active site architecture, and act

upon trans-alkene substrates by the same mechanism. Opposite

configurational outcomes are dictated by relatively minor

changes in the presentation of the substrate to the active site

as a result of differences in a few critical amino acid residues,

leading to protonation from the opposite face of the double

bond. For the vast majority of ER domains, the geometry of the

substrate (an unsaturated PKS-bound intermediate that does

not accumulate) has not been established by experiment. How-

ever, where this has been done, for PikER4 (Castonguay et al.,

2007) and for erythromycin PKS ER4 (EryER4) (Kellenberger

et al., 2008), the geometry was confirmed as trans. We were

therefore encouraged to examine publicly available ER

sequences for residues that might be diagnostic of the stereo-

chemical outcome of a given ER domain.

Multiple Sequence Alignment of ER Domains Reveals
a Unique Amino Acid Residue Predictive of the
Stereochemical Outcome of Enoylreduction
Multiple sequence alignments were constructed for all available

type I ER domains, in which a propionate unit becomes fully

Figure 1. The Reaction Catalyzed by ER Domains

1,4-Nucleophilic addition of hydride ion, delivered from NADPH, to the unsat-

urated thioester is followed by stereospecific protonation, which establishes

the configuration of the methyl branch. Anti addition to the double bond is illus-

trated, as demonstrated for mammalian fatty acid synthase (Smith and Tsai,

2007), but instances of syn addition are also known (Smith and Tsai, 2007).
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reduced and gives rise to a methyl branch of known configura-

tion in the final polyketide product. Scrutiny of these sequence

alignments (Figure 2; see Supplemental Data available online)

revealed that there is a single amino acid that shows excellent

correlation with the configuration of the polyketide product for

those cases where it is known. This residue lies about 90 resi-

dues N terminal of a well-conserved HAAAGGVGMA consensus

sequence identified as the site of NADPH cofactor binding (Amy

et al., 1989). In those ER domains producing a (2S)-methyl

branch, a tyrosine (Y) residue is systematically conserved at

this position, whereas in those ER domains producing a (2R)-

methyl branch, a valine (V) residue (or occasionally alanine or

phenylalanine) is found at this position (Figure 2). This position

corresponds precisely to Tyr52 in the closely homologous

Escherichia coli enzyme quinone oxidoreductase (QOR; PDB

ID 1QOR) (Thorn et al., 1995). For ease of reference, this position

in the PKS ER domains is labeled 520, and other residues within

the ER domain are numbered relative to it. Among the ER

sequences analyzed, those processing a propionate extender

unit all appear to follow this trend, the only exception (Supple-

mental Data) appearing to be an ER domain from the myxobac-

terial soraphen PKS (Bedorf et al., 1993), soraphen ER3, which

acts on an unusual methoxy-branched extender unit (Wenzel

et al., 2006). The product of this PKS has been confirmed by

X-ray crystallography to have S configuration at the relevant

position, but the ER domain has a leucine instead of a tyrosine

at residue 520 (Ligon et al., 2002).

Homology Models of PKS ER Domains Place Residue 520

at the Active Site
As previously reported (Maier et al., 2006), searches of publicly

available databases readily show that the ER domains of modular

PKSs are members of the medium-chain NAD(P)H-dependent

dehydrogenase/reductase (MDR) family of enzymes, and that

they share most significant homology with the QOR subfamily

(Persson et al., 1994). Homology models of the ERs from

6-deoxyerythronolide B synthase (DEBS) module 4 (EryER4)

and rapamycin synthase (RAPS) module 13 (rapamycin PKS

ER13 [RapER13]) were constructed based on the MDR enzyme

E. coli QOR (PDB ID 1QOR) (Thorn et al., 1995) as template

(24% sequence identity), as described in the Experimental Pro-

cedures. The overall fold predicted for both EryER4 and RapER13

was essentially identical, and served to reveal key conserved

features of their predicted active sites (Figure 3). The position of

the bound NADPH cofactor could also be modeled with confi-

dence. Both model structures suggest that residue 520 (Tyr in

EryER4; Val in RapER13) lies at the active site, adjacent to the

C40 of NADPH, from which the hydride ion is transferred during

reduction (Figure 3).

Site-Directed Mutagenesis of ER Domains
in a Triketide Synthase Multienzyme
The bimodular PKS DEBS1-TE (Cortés et al., 1995), housed in

a suitable strain of Saccharopolyspora erythraea or of a related

actinomycete, is an established model system for the study of

modular polyketide synthesis. It was engineered by relocating

the chain-terminating thioesterase domain from DEBS3 to the

C terminus of the bimodular DEBS1 protein, and the products

of this synthase are triketide lactones. In previous work, it has
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been shown that, when the KR2 domain of DEBS1-TE is replaced

by the full ‘‘reductive loop’’ (Kellenberger et al., 2008) of KR, DH,

and ER domains from DEBS module 4, the resulting triketide

synthase, referred to here as TKS-ery4, produces the triketide

lactones 1a and 1b fully reduced at C-3 (the a and b forms result

from the incorporation of either propionate or acetate as starter

units, respectively) (Figure 4A). In contrast, replacement of the

module 2 KR domain of DEBS1-TE by the reductive loop (KR,

DH, and ER domains) of RAPS module 13 resulted in a triketide

synthase, TKS-rap13, which produced triketide lactones 2a

and 2b (Figure 4B) (Kellenberger et al., 2008).The compounds

1a and 1b differ from compounds 2a and 2b in the configuration

of the methyl substituent at the C-2 position, a difference that

arises presumably from the differing stereospecificity of the

EryER4 and the RapER13 domains (Kellenberger et al., 2008).

The products of TKS-ery4 have (2S) configuration consistent

Figure 2. Sequence Alignment of a Portion of Representative ER Domains from PKSs

The position of the unique tyrosine (Y520) residue correlated with (2S) configuration in the polyketide product is marked with black triangles. The position of

the NADPH binding site is marked with gray bars. Residue numbering is that of E. coli QOR (PDB ID 1QOR) (Thorn et al., 1995) on which the ER domains

were modeled.

Figure 3. Homology Models of ER Domains

(A and B) Models of (A) EryER4 and (B) RapER13 with bound cofactor NADPH were constructed using E. coli QOR (PDB ID 1QOR) (Thorn et al., 1995) as template.

The characteristic tyrosine (EryER4) and valine (RapER13) residues are highlighted in yellow, and NADPH is shown in dark blue.
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with having Tyr at position 520, while the products of TKS-rap13

have (2R) configuration consistent with having Val at position 520.

To analyze the role of residue 520 more precisely, site-directed

mutagenesis was carried out at this position within the ER

domains of TKS-ery4 (Y520V) and TKS-rap13 (V520Y) (Figure 4).

The mutant DEBS1-TE genes were cloned (see Experimental

Procedures) into the integrative plasmids pYH141 and

pYH137, under the control of the inducible actI-actIIorf4 pro-

moter (McDaniel et al., 1994), and introduced by conjugation

into Streptomyces coelicolor CH999 (McDaniel et al., 1994),

where they integrated into the genome. Cultures of the recombi-

nant strains produced low (�1–2 mg/L), but readily detectable

levels of triketide lactones that were not produced by the plas-

mid-free control strain. In this host, the Y520V TKS-ery4 mutant

produced compounds 2a and 2b as judged by LC-MS analysis

(Supplemental Data) and not the compounds 1a and 1b pro-

duced by the strain housing the parent PKS, TKS-ery4. This

change represents a switch in the configuration of the C-2 methyl

group. In contrast, the V520Y TKS-rap13 mutant produced the

same compounds 2a and 2b as the strain housing the parent

PKS, TKS-rap13 (Supplemental Data). Authentic synthetic

samples of the known compounds 1a, 1b, 2a, and 2b, used for

calibration of the LC-MS, were the kind gift of Dr. M.L. Heathcote

(Department of Chemistry, University of Cambridge).

These initial results prompted further investigation using as

the host strain S. erythraea BIOT1717-JC2, an erythromycin-

overproducing strain from which essentially all erythromycin

PKS genes had been deleted. The PKS genes encoding TKS-

ery4 and TKS-rap13, as well as the mutant genes encoding

Y520V TKS-ery4 and V520Y TKS-rap13, were each introduced

Figure 4. Recombinant Triketide Synthases

Based on DEBS1-TE

(A and B) Schematic representation of the DEBS1-

TE-based triketide synthase (Cortés et al., 1995)

with (A) the reductive loop (Kellenberger et al.,

2008) of ery module 4, or (B) the reductive loop

(Kellenberger et al., 2008) of rap module 13. The

products of the parent enzyme are shown along-

side those of the variants mutated at residue 520.

into BIOT1717-JC2 under the control of

the erythromycin PKS promoter, on suit-

able integrative plasmids. Fermentation

of the resulting recombinant strains

gave significantly increased yields of tri-

ketide lactones, all of which were a forms

(propionate starter unit derived), consis-

tent with the fact that the BIOT1717 strain

had originally been optimized for erythro-

mycin A production, which requires ex-

clusively propionate starter units. In

agreement with the observations made

using S. coelicolor, LC-MS analysis of

broth extracts showed that the strain en-

coding TKS-ery4 produced chiefly 1a,

but in this strain it was accompanied by

small amounts of 2a, which would not

have been detectable in the lower-yield-

ing S. coelicolor strain (Figure 5A). The BIOT1717-JC2 strain

containing Y520V TKS-ery4 produced product 2a only, in

amounts similar to that of the strain carrying the parent TKS-

ery4 (Figure 5B). The strain encoding TKS-rap13, and the strain

encoding V520Y TKS-rap13, both produced 2a at nearly equal

levels, and with no detectable amount of the other isomer (Fig-

ures 5C and 5D). The products of strains carrying TKS-ery4

and Y520V TKS-ery4 were coinjected into the LC-MS and

confirmed to migrate as separate peaks.

Prediction of the Configuration of Methyl-Branched
Cell Wall Lipids in Mycobacteria
Within their complex cell walls, the pathogenic mycobacteria

contain multiply methyl-branched, saturated lipids of polyketide

or fatty acid origin. These cell wall lipids give rise to the waxy en-

velope that is characteristic of mycobacteria, and are considered

to be a major determinant of mycobacterial pathogenicity, with

important roles in the host-immune response (Gokhale et al.,

2007). We were interested to compare the experimentally deter-

mined methyl-branch configuration of these lipids to the config-

uration predicted on the basis of the indicator residue that we

had identified in the ER domains of the very similar PKS enzymes

of antibiotic-producing actinomycetes. The dimycocerosate es-

ters (DIMs), for example, are mycobacterial cell wall lipids that

contribute to the permeability barrier of the cell envelope and

have been shown to promote virulence in pathogenic mycobac-

teria (Cox et al., 1999; Camacho et al., 2001). The DIMs consist of

two multiply methyl-branched, saturated acyl chains, mycocero-

sic acids, attached in ester linkage to neighboring hydroxyl

groups in a phthiocerol moiety (Figure 6). Both mycocerosyl
1234 Chemistry & Biology 15, 1231–1240, November 24, 2008 ª2008 Elsevier Ltd All rights reserved
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and phthiocerol moieties are biosynthesized by PKS enzymes.

All of the methyl branches of the DIMs found either in Mycobac-

terium ulcerans, the causative agent of the disease known as

Buruli ulcer (Hong et al., 2008), or in the closely related Mycobac-

terium marinum, share the same configuration (Daffé et al.,

1984). However, all are opposite in configuration to the methyl

branches in the otherwise chemically identical DIMs found in tu-

berculosis-causing M. tuberculosis and in Mycobacterium bovis

and Mycobacterium leprae (Figure 6) (Daffé and Lanéelle, 1988;

Daffé, 1991).

A mycocerosic acid synthase (Mas) multienzyme has previ-

ously been identified in both M. tuberculosis H37Rv and M. bovis

BCG, and shown to biosynthesize branched mycocerosic acids

by the iterative elongation of n-fatty acyl-CoA with methylma-

lonyl-CoA followed by full reduction (Rainwater and Kolattukudy,

1983, 1985; Mathur and Kolattukudy, 1992). Scrutiny of se-

quence comparisons between the M. tuberculosis H37Rv and

M. bovis BCG Mas proteins and their closest homologs in M. ul-

cerans Agy99 and M. leprae revealed that, in M. ulcerans, the ER

domain of the Mas protein contains a Tyr520 residue, correspond-

ing to the all-S methyl-branched mycocerosate. In contrast, in M.

tuberculosis, M. bovis, and M. leprae, which share the same all-R

methyl-branch configuration in the mycocerosyl moieties of their

DIMs, the 520 residue of the Mas ER domain is phenylalanine

(Supplemental Data).

For one mycobacterial PKS, the chirality of the product has not

been determined with certainty. b-Mannosyl phosphomycoket-

Figure 5. LC-MS Chromatograms of Trike-

tide Lactones Produced from Engineered

Triketide Synthases

(A–D) LC-MS traces of fermentation extracts from

S. erythraea strains housing, respectively: (A)

TKS-ery4; (B) Y520V TKS-ery4; (C) TKS-rap13;

and (D) V520Y TKS-rap13.

ides (MPMs) are important mycobacterial

antigens produced in trace amounts by

several pathogenic strains, including M.

tuberculosis, M. bovis, and M. avium

(Trivedi et al., 2005). MPMs are presented

to T cells by CD1c of infected cells as part

of the immune response (Moody et al.,

2000; Matsunaga et al., 2004; Trivedi

et al., 2005). The saturated fatty acid

chains of MPMs exhibit an intriguing

methyl-branching pattern (Figure 7).

Originally thought to be of isoprenoid or-

igin, MPMs are now known to be synthe-

sized by the action of a specific PKS

(Moody et al., 2000; Matsunaga et al.,

2004), the product of pks12, the largest

open reading frame in the M. tuberculo-

sis genome. Pks12 is a bimodular PKS,

which has been proposed to synthesize

the fatty acyl chains of MPMs by elon-

gating a long-chain acyl-CoA

primer through five rounds each of alter-

nating propionate and acetate units, derived, respectively, from

methylmalonyl-CoA and malonyl-CoA (Figure 7) (Trivedi et al.,

2005; Chopra et al., 2008). The first module of Pks12 is respon-

sible for incorporating the methyl-branched units, and analysis

of the sequence of the ER domain housed in this module

showed that the 520 position is always occupied by Phe and

not Tyr (Supplemental Data). We therefore predict an R config-

uration for every methyl branch.

MPMs have not yet been isolated in amounts sufficient to de-

termine their configuration directly. Meanwhile, others have un-

dertaken the preparation of wholly synthetic MPMs containing

all-S methyl branches, under the assumption (contrary to our

present prediction) that this is the more likely configuration

(van Summeren et al., 2006; de Jong et al., 2007). It is reported

that the synthetic all-S MPM induces a T cell response

comparable to that induced by an authentic MPM sample

from M. tuberculosis (de Jong et al., 2007).

DISCUSSION

The factors governing stereocontrol during ER-catalyzed reduc-

tion on modular PKSs have been obscure. The MDR family of

enzymes, to which the ER domains of modular PKS belong, is

structurally heterogeneous, and crystallographic and mechanis-

tic studies on enzymes most closely related to the ER domains

have lagged behind work on, for example, the bacterial type II

enoyl-(acyl carrier protein) reductases that are the target for
Chemistry & Biology 15, 1231–1240, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1235
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Figure 6. Biosynthesis of the Mycocerosyl Moiety of DIMs

(A) The Mas PKS catalyzes the biosynthesis of the mycocerosyl moieties of DIMS (Rainwater and Kolattukudy, 1985) by the iterative extension of n-fatty acyl

chains by four successive propionate units, with ER-catalyzed enoylreduction occurring in every cycle.

(B) Configuration of DIMs in M. tuberculosis and M. ulcerans.
diazaborine antibiotics, the biocide triclosan, and one of the tar-

gets for the first-line antituberculosis drug isoniazid (Levy

et al., 1999). In the latter enzymes, conserved lysine and tyro-

sine residues have been highlighted as important for catalysis,

which are also important in the KR domains of PKS multien-

zymes (Reid et al., 2003). Meanwhile, stereocontrol on KR

domains has been shown to involve subtle alterations in active

site architecture that together determine the direction of

approach of the substrate to a highly conserved catalytic

apparatus (Baerga-Ortiz et al., 2006; O’Hare et al., 2006).

We expected to uncover similar mechanisms at work in ER

active sites, but nevertheless were surprised to make the ob-

servation that we report here, that a single amino acid residue

differs systematically between PKS ER domains, yielding op-

posite configurations. It has previously been suggested that

Tyr52 in E. coli QOR (and corresponding tyrosine residues in

the homologous mammalian z-crystallins) might be essential

for catalytic activity, acting, for example, to polarize the thio-

ester carbonyl (Rao et al., 1997). However, the fact that

many fully functional modular PKS ERs have valine at this

position makes this proposal untenable. Our homology models

suggest that another conserved tyrosine residue (Tyr1250 in

either EryER4 or RapER13; Tyr130 of E. coli QOR) is a more

plausible candidate for a catalytically essential residue, as pre-

viously proposed (Persson et al., 1994).
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The results of specific mutations confirm that a tyrosine resi-

due at 520 is not essential for catalysis, and support a key role

of the residue at this position in determining the stereochemical

course of reduction. The replacement of this single residue in the

EryER4 active site appears to be sufficient to alter the stereo-

chemistry of enoylreduction (and without substantial diminution

in overall yield of polyketide product) toward that seen with

RapER13. In contrast to the switch of configuration previously

achieved with a purified PKS KR domain (Baerga-Ortiz et al.,

2006), the switch seen here occurs in the context of a PKS

multienzyme, which encourages the view that highly targeted

mutagenesis could become a useful tool in engineering PKSs

to produce configurationally altered polyketide natural products.

In the higher-yielding S. erythraea expression system, analysis

showed that even the unmutated EryER4 domain gave rise to

a small amount of triketide lactone 2a, which has the ‘‘switched’’

(2R) configuration. Stereocontrol here may be imperfect,

because the ER4 in its native context would be presented with a

tetraketide rather than a diketide substrate. Possibly, too, the

chain-terminating thioesterase (TE) domain, the natural heptake-

tide substrate of which has (2R) rather than (2S) configuration,

might catalyze faster release of the triketide that leads to 2a

product. Taken together, the results suggest (as for the KR

domains) that the stereochemical outcome reflects a delicate

energetic balance between alternative ways in which the
8 Elsevier Ltd All rights reserved
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Figure 7. Biosynthesis of the Mycoketide Moiety of MPMs

The enzyme Pks12 catalyzes the biosynthesis of the mycoketide moiety of MPMs by iterative elongation of an n-fatty acyl chain with alternating propionate and

acetate extender units (five cycles each) (Trivedi et al., 2005), with ER-catalyzed enoylreduction occurring in every cycle.
tethered substrate is presented to a highly conserved catalytic

apparatus.

Site-directed mutagenesis (V520Y) of the RapER13 domain

gave an enzyme that showed no obvious impairment of catalytic

function, and the triketide lactone product of which retained the

same configuration as the unmutated enzyme. Resequencing of

the appropriate region of DNA in the recombinant strain con-

firmed that the desired mutation had indeed been introduced.

In addition, consistent results were obtained in each of the

host strains S. coelicolor and S. erythraea. Further work is

needed to establish the exact molecular basis for the resistance

to the anticipated switch in the configuration of the product.

These results suggest, however, that other residues at the active

site remain to be identified that participate in stereocontrol, and

they again highlight the finely balanced energetic differences

between the different outcomes.

We have also shown here that the correlation of residue 520

with the configuration of the methyl branches in fully reducing

modules holds for certain mycobacterial modular PKS systems,

such as Mas that synthesizes (multiply methyl-branched)

mycocerosic acids. The ER domains of Mas can also be con-

vincingly modeled on 1QOR as template. In contrast, other ER

enzymes implicated in mycobacterial lipid formation appear to

have a different fold. For example, a trans-acting ER, Rv2953,

has been recently identified as catalyzing reduction of a double

bond during biosynthesis of the phthiocerol moiety of DIM

(Siméone et al., 2007). This gives rise to a methyl-branched ster-

eocenter, which again in M. ulcerans is opposite in configuration

to that in M. tuberculosis, M. bovis, and M. leprae (Daffé, 1991)

(Figure 6). The active site residues participating in stereocontrol

in Rv2953, and its homologs in other mycobacterial species, re-

main to be identified. For the multienzyme Pks12, which governs

the production of MPMs in pathogenic strains of mycobacteria,

our prediction is at odds with a previous proposal that was

used to justify the synthesis of all-S rather than all-R MPM. How-

ever, given the potential importance of these lipids in modulating

the host response to infection, it would be of considerable inter-

est (pending the direct determination of the correct geometry of

natural MPMs) to synthesize and determine the biological prop-

erties of the all-R methyl-branched MPMs as well. Meanwhile,

identification of ER residue 520 as tyrosine (or not) allows a robust
Chemistry & Biology 15, 1231–12
prediction of methyl branch stereochemistry for the products of

PKS multienzymes, the genes of which are uncovered through

focused or genome-scale sequencing efforts.

SIGNIFICANCE

Exquisite stereochemical control is a central feature of the

biosynthesis of polyketide antibiotics on modular polyketide

synthases (PKSs). We have explored the molecular basis for

the contribution to this control provided by the enoylreduc-

tase (ER) domain in those modules where a branching methyl

group is introduced. By determining whether or not a unique

tyrosine residue is present in the ER active site, the configu-

ration of the polyketide product at the methyl branch can be

confidently predicted. This further strengthens an emerging

paradigm, according to which stereocontrol arises through

the presentation of a different face of the substrate to an es-

sentially invariant catalytic apparatus in each of the domains

of a PKS. The finely balanced energetic difference between

these presentational modes is highlighted by our finding

that mutation of this key residue in an intact PKS system

can switch the configuration of the product. This both illus-

trates a potential mechanism for natural evolution of these

multienzymes, and encourages further experiments to alter

that specificity by active site engineering.

EXPERIMENTAL PROCEDURES

Homology Modeling

The sequences of erythromycin PKS ER4 (EryER4) and rapamycin PKS ER13

(RapER13) were compared with all protein sequences deposited in Swiss Prot,

using the Blast v2.2 program (Altschul et al., 1997). A PSI-BLAST search in

each case produced an alignment between the EryER4 and RapER13 domains

and homologous proteins. Homologous proteins with known structure were

identified using the FUGUE homology recognition server (Shi et al., 2001).

FUGUE searches for homologs in the structural profile library derived from

the structure-based alignments in the HOMSTRAD database (Mizuguchi

et al., 1998), and uses the environment-specific substitution tables to gener-

ate, automatically, the best alignments for the top hits. The homolog found

with highest percentage identity (24%) to both ER domains was E. coli QOR

(PDB ID 1QOR). The alignments produced by FUGUE for this highest-scoring

hit were formatted and analyzed as previously described (Baerga-Ortiz et al.,

2006). The models of EryER4 and RapER13 were constructed with MODELER
40, November 24, 2008 ª2008 Elsevier Ltd All rights reserved 1237
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(Sali and Blundell, 1993) (using E. coli QOR as the template) and improved

using loop-building programs, as previously described (Baerga-Ortiz et al.,

2006). Final energy and structure minimization were performed using the

SYBYL force field (Tripos, Inc., St. Louis, MO). The models were validated

by PROCHECK (Laskowski et al., 1993) and by visual inspection using 3D

graphics software.

Construction of Plasmids

Constructs for S. coelicolor CH999

For TKS-ery4, the plasmid pJLK41 (Kellenberger et al., 2008) was subjected to

site-directed mutagenesis using primers 1 and 2 (Supplemental Data) to

introduce the mutation Y520V, resulting in plasmid pJLK41mut. The NdeI/

XbaI fragment of this plasmid was cloned into vector pCJR133, digested

with the same enzymes, to yield plasmid pYH141.

For TKS-raps13, the NdeI/XbaI fragment of pJLK27 (Kellenberger et al.,

2008) was ligated to the vector pCJR133 (Rowe et al., 1998), digested with

the same enzymes, yielding plasmid pYH136. The mutation V520Y was intro-

duced by site-directed mutagenesis using primers 3 and 4 (Supplemental

Data), resulting in plasmid pYH137.

Constructs for S. erythraea BIOT1717-JC2

For TKS-ery4, the NdeI/XbaI fragment of pJLK41 was ligated into pFS1 di-

gested with the same enzymes, resulting in plasmid pDK18.0. The NdeI/XbaI

fragment of pJLK41mut was subcloned into pFS1 to yield pDK18.1.

For TKS-raps13, the NdeI/XbaI fragment of plasmid pJLK27 was inserted

into vector pFS1 (comprising the FVWB integrase, an attB integration site,

the DEBS native promoter, an origin of transfer for conjugation, and an apra-

mycin resistance gene), digested with the same enzymes, resulting in plasmid

pDK19.0. The variant TKS-raps13-V520Y was likewise subcloned into pFS1,

resulting in plasmid pDK19.1.

Site-Directed Mutagenesis

Site-directed mutagenesis was carried out using either the QuikChange II

XL Site-Directed Mutagenesis Kit (Stratagene), following the manufacturer’s

instructions, or by overlap-extension PCR (Ho et al., 1989), using the primers

mentioned above. The mutations were confirmed by sequencing (DNA

Sequencing Facility, Department of Biochemistry, University of Cambridge,

Cambridge, UK).

Manipulation and Handling of Bacterial Strains

E. coli was routinely grown in 2TY medium (1.6% tryptone, 1% yeast extract,

0.5% NaCl, containing 25 mg ml�1 kanamycin, 50 mg ml�1 apramycin, or

25 mg ml�1 chloramphenicol, if appropriate) at 37�C and transformed and

maintained by standard procedures. E. coli ET12567/pUZ8002 (Kieser et al.,

2000) was used for conjugation, and E. coli DH10B for general cloning

purposes.

The plasmids pYH137 and pYH141 were introduced into S. coelicolor by

conjugation (Kieser et al., 2000). The resulting strains were grown at 30�C in

TSBY liquid medium (3% tryptone soy broth, 10.3% sucrose, 0.5% yeast

extract) for strain maintenance and isolation of genomic DNA and on tap water

medium agar (0.5% glucose, 1% sucrose, 0.5% tryptone, 0.25% yeast extract,

2% agar, pH 7.1, tap water) for the analysis of triketide lactone production.

Plasmids pDK18.0, pDK18.1, pDK19.0, and pDK19.1 were introduced into

S. erythraea BIOT1717-JC2 by conjugation (Kieser et al., 2000). For strain

maintenance and isolation of genomic DNA, M79 medium (1% glucose, 1%

peptone, 0.2% yeast extract, 0.6% NaCl, 1% casein hydrolysate, pH 7.0,

tap water) or TSB medium (Bacto BD Tryptic Soy Broth) was used. For analysis

of triketide lactone production, eryP medium (5% glucose, 3% soybean flour,

0.3% (NH4)SO4, 0.5% NaCl, 0.6% CaCO3, Antifoam A Concentrate [Sigma],

50 mg ml�1 apramycin, pH 7.0) was used, at 30�C.

Analysis of Triketide Lactones

To isolate triketide lactone from S. coelicolor CH999 strains, a tap water

medium agar plate was extracted after 7 days of growth with ethyl acetate

(1.6% formic acid). The solvent was removed in vacuo, and the residual oil

dissolved in 600 ml methanol for analysis by LC-MS.

For the isolation from S. erythraea BIOT1717-JC2, a 10 ml TSB medium

(50 mg ml�1 apramycin, 25 mg ml�1 nalidixic acid) was grown at 30�C for

3 days. A 1 ml aliquot of this starter culture was used to inoculate 25 ml of
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eryP medium (Rowe et al., 1998) (50 mg ml�1 apramycin). After 10 days at

30�C, triketide lactone was extracted with 25 ml ethyl acetate (containing

1.6% formic acid), the organic phase was removed in vacuo, and the remaining

oil redissolved in 1 ml methanol before being subjected to LC-MS analysis.

LC-MS analysis was carried out on an Agilent 1200 HPLC system fitted with

a Phenomenex ODS column (250 3 2.00 mm, 5 mm) and a Finnigan LTQ mass

spectrometer system. The mobile phase used was a linear gradient from 95%

water, 5% acetonitrile, 0.1% formic acid to 30% water, 70% acetonitrile, 0.1%

formic acid over 35 min.

SUPPLEMENTAL DATA

Supplemental Data include two figures and two tables and can be found

with this article online at http://www.chembiol.com/cgi/content/full/15/11/

1231/DC1/.
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